93 research outputs found

    Visibility of LEO satellites under different ground network distributions

    Get PDF
    The Low Earth Orbit (LEO) satellites have shown various benefits in augmenting the Positioning, Navigation and Timing (PNT) service based on Global Navigation Satellite Systems (GNSSs). The higher number of LEO satellites and their much smaller footprints than those of the GNSS satellites motivate studies of the ground tracking network design to pursue higher visibilities to LEO satellites. This contribution proposes an algorithm, called here ‘MaxVis’ to select network stations for LEO satellites of different inclinations and altitudes. The goal is to increase the general visibility and shorten the visibility gaps of LEO satellite that can be observed from the entire ground network, i.e., when at least one of the network stations are visible to the satellite. A parameter can be set to balance the priority of the two objectives. It was found that LEO satellites with high altitudes and low inclinations tend to deliver high visibility. With only the polar regions excluded from the design area for demonstration purposes, the general visibility could reach above 98% with less than 30 stations when the LEO satellite has an altitude of 1200 km and an inclination of 50 degrees. The visibility could be significantly reduced when island areas are excluded from the design area

    Integer ambiguity Resolution in Multi-constellation GNSS for LEO Satellites POD

    Get PDF
    Precise Orbit Determination (POD) of Low Earth Orbit (LEO) satellites is essential for future LEO-augmented Positioning, Navigation and Timing (PNT) service based on the use of Global Navigation Satellite Systems (GNSS) measurements. Compared with the ambiguity-float LEO satellite POD, Integer Ambiguity Resolution (IAR) reduces number of parameters, eliminates the high correlations between the ambiguities and other estimable parameters, and strengthens model strength. In this study, using real data from Sentinel-6A tracking dual-frequency GPS and Galileo observations, the wide-lane (WL) and narrow-lane (NL) ambiguity fixing rates and the effects of the IAR on orbital accuracy are assessed in the single- and dual-constellation scenarios. Post-processed high-accuracy GNSS satellite clocks, orbits and Observable-specific Signal Biases (OSBs) from the final products of the Center for Orbit Determination in Europe (CODE) and the rapid products of the GeoForschungsZentrum (GFZ) are used for the analysis. Results showed that both the WL and NL fixing rates in the Galileo-only scenario are higher than those in the GPS-only scenario, reaching more than 98%. This implies a better signal quality of the Galileo observations. Applying IAR has improved the orbital accuracy for all single- and dual-constellation scenarios, and was shown to be especially helpful in reducing the once-per-revolution systematic effects in the along-track orbital errors, with over 50% improvement when using the COM products. With the IAR enabled, when using the COM final products, the 3D RMS of the orbital errors amounts to 1.2, 1.2 and 1.1 cm in the GPS-only, Galileo-only and GPS+Galileo combined scenarios, and the RMS of the Orbital User Range Errors (OUREs) amounts to 0.7, 0.7 and 0.6 cm, respectively. When using the GFZ rapid products, the IAR-enabled 3D RMS were 1.8, 2.1 and 1.4 cm in the GPS-only, Galileo-only and GPS+Galileo combined scenarios, with OURE RMS of about 1 cm

    Integrity Monitoring of PPP-RTK Positioning; Part I: GNSS-Based IM Procedure

    Get PDF
    Nowadays, integrity monitoring (IM) is required for diverse safety-related applications using intelligent transport systems (ITS). To ensure high availability for road transport users for in-lane positioning, a sub-meter horizontal protection level (HPL) is expected, which normally requires a much higher horizontal positioning precision of, e.g., a few centimeters. Precise point positioning-real-time kinematic (PPP-RTK) is a positioning method that could achieve high accuracy without long convergence time and strong dependency on nearby infrastructure. As the first part of a series of papers, this contribution proposes an IM strategy for multi-constellation PPP-RTK positioning based on global navigation satellite system (GNSS) signals. It analytically studies the form of the variance-covariance (V-C) matrix of ionosphere interpolation errors for both accuracy and integrity purposes, which considers the processing noise, the ionosphere activities and the network scale. In addition, this contribution analyzes the impacts of diverse factors on the size and convergence of the HPLs, including the user multipath environment, the ionosphere activity, the network scale and the horizontal probability of misleading information (PMI). It is found that the user multipath environment generally has the largest influence on the size of the converged HPLs, while the ionosphere interpolation and the multipath environments have joint impacts on the convergence of the HPL. Making use of 1 Hz data of Global Positioning System (GPS)/Galileo/Beidou Navigation Satellite System (BDS) signals on L1 and L5 frequencies, for small-to mid-scaled networks, under nominal multipath environments and for a horizontal PMI down to 2 × 10−6, the ambiguity-float HPLs can converge to 1.5 m within or around 50 epochs under quiet to medium ionosphere activities. Under nominal multipath conditions for small-to mid-scaled networks, with the partial ambiguity resolution enabled, the HPLs can converge to 0.3 m within 10 epochs even under active ionosphere activities

    Talk2Care: Facilitating Asynchronous Patient-Provider Communication with Large-Language-Model

    Full text link
    Despite the plethora of telehealth applications to assist home-based older adults and healthcare providers, basic messaging and phone calls are still the most common communication methods, which suffer from limited availability, information loss, and process inefficiencies. One promising solution to facilitate patient-provider communication is to leverage large language models (LLMs) with their powerful natural conversation and summarization capability. However, there is a limited understanding of LLMs' role during the communication. We first conducted two interview studies with both older adults (N=10) and healthcare providers (N=9) to understand their needs and opportunities for LLMs in patient-provider asynchronous communication. Based on the insights, we built an LLM-powered communication system, Talk2Care, and designed interactive components for both groups: (1) For older adults, we leveraged the convenience and accessibility of voice assistants (VAs) and built an LLM-powered VA interface for effective information collection. (2) For health providers, we built an LLM-based dashboard to summarize and present important health information based on older adults' conversations with the VA. We further conducted two user studies with older adults and providers to evaluate the usability of the system. The results showed that Talk2Care could facilitate the communication process, enrich the health information collected from older adults, and considerably save providers' efforts and time. We envision our work as an initial exploration of LLMs' capability in the intersection of healthcare and interpersonal communication.Comment: Under submission to CHI202

    Amorphous Alloy: Promising Precursor to Form Nanoflowerpot

    Get PDF
    Nanoporous copper is fabricated by dealloying the amorphous Ti2Cu alloy in 0.03 M HF electrolyte. The pore and ligament sizes of the nanoporous copper can be readily tailored by controlling the dealloying time. The as-prepared nanoporous copper provides fine and uniform nanoflowerpots to grow highly dispersed Au nanoflowers. The blooming Au nanoflowers in the nanoporous copper flowerpots exhibit both high catalytic activity and stability towards the oxidation of glucose, indicating that the amorphous alloys are ideal precursors to form nanoflowerpot which can grow functional nanoflowers

    Enzyme-Free Electrochemical Glucose Sensors Prepared by Dealloying Pd-Ni-P Metallic Glasses

    Get PDF
    We report the formation of enzyme-free electrochemical glucose sensors by electrochemical dealloying palladium-containing Pd-Ni-P metallic glasses. When metallic glasses with different Pd contents are used as the dealloying precursor alloys, palladium-based nanoporous metals with different ligament and pore sizes can be obtained. The chemical compositions of the nanoporous metals also vary according to the different precursor compositions. All the as-obtained nanoporous metals exhibit electrochemical catalytic activity towards the oxidation of d-glucose, indicating that the nanoporous metals prepared by dealloying the Pd-Ni-P metallic glasses are promising materials for enzyme-free electrochemical glucose sensor

    The Contribution of Sound Intensity in Vocal Emotion Perception: Behavioral and Electrophysiological Evidence

    Get PDF
    Although its role is frequently stressed in acoustic profile for vocal emotion, sound intensity is frequently regarded as a control parameter in neurocognitive studies of vocal emotion, leaving its role and neural underpinnings unclear. To investigate these issues, we asked participants to rate the angry level of neutral and angry prosodies before and after sound intensity modification in Experiment 1, and recorded electroencephalogram (EEG) for mismatching emotional prosodies with and without sound intensity modification and for matching emotional prosodies while participants performed emotional feature or sound intensity congruity judgment in Experiment 2. It was found that sound intensity modification had significant effect on the rating of angry level for angry prosodies, but not for neutral ones. Moreover, mismatching emotional prosodies, relative to matching ones, induced enhanced N2/P3 complex and theta band synchronization irrespective of sound intensity modification and task demands. However, mismatching emotional prosodies with reduced sound intensity showed prolonged peak latency and decreased amplitude in N2/P3 complex and smaller theta band synchronization. These findings suggest that though it cannot categorically affect emotionality conveyed in emotional prosodies, sound intensity contributes to emotional significance quantitatively, implying that sound intensity should not simply be taken as a control parameter and its unique role needs to be specified in vocal emotion studies

    When Brain Differentiates Happy from Neutral in Prosody?

    No full text
    The effect of different intensities of vocal emotion on event related potentials has yet not been studied. We therefore investigated 16 healthy participants with emotion and sound decision on neutral and happy voice which varied continuously in intensity. The result found that neutral and happy voice can be differentiated on P2 component under both explicit and implicit condition. Moreover, the P2 parameters were linear correlated with the rate of happiness, suggesting a graded processing of vocal emotion in early stage. However, the brain distinguished neutral from happy in P3 interval when performing explicit task but exhibit a categorical feature.</p

    High-Precision Ionosphere Monitoring Using Continuous Measurements from BDS GEO Satellites

    No full text
    The current constellation of the BeiDou Navigation Satellite System (BDS) consists of five geostationary earth orbit (GEO) satellites, five inclined geosynchronous satellite orbit (IGSO) satellites, and four medium earth orbit (MEO) satellites. The advantage of using GEO satellites to monitor the ionosphereis the almost motionless ionospheric pierce point (IPP), which is analyzed in comparison with the MEO and IGSO satellites. The results from the analysis of the observations using eight tracking sites indicate that the ionospheric total electron content (TEC) sequence derived from each GEO satellite at their respective fixed IPPs is always continuous. The precision of calculated vertical TEC (VTEC) using BDS B1/B2, B1/B3, and B2/B3 dual-frequency combinationsis compared and analyzed. The VTEC12 precision based on the B1/B2 dual-frequency measurements using the smoothed code and the raw code combination is 0.69 and 5.54 TECU, respectively, which is slightly higher than VTEC13 and much higher than VTEC23. Furthermore, the ionospheric monitoring results of site JFNG in the northern hemisphere, and CUT0 in the southern hemisphere during the period from 1 January to 31 December 2015 are presented and discussed briefly

    Global Navigation Satellite System Multipath Mitigation Using a Wave-Absorbing Shield

    No full text
    Code multipath is an unmanaged error source in precise global navigation satellite system (GNSS) observation processing that limits GNSS positioning accuracy. A new technique for mitigating multipath by installing a wave-absorbing shield is presented in this paper. The wave-absorbing shield was designed according to a GNSS requirement of received signals and collected measurements to achieve good performance. The wave-absorbing shield was installed at the KUN1 and SHA1 sites of the international GNSS Monitoring and Assessment System (iGMAS). Code and carrier phase measurements of three constellations were collected on the dates of the respective installations plus and minus one week. Experiments were performed in which the multipath of the measurements obtained at different elevations was mitigated to different extents after applying the wave-absorbing shield. The results of an analysis and comparison show that the multipath was mitigated by approximately 17%–36% on all available frequencies of BeiDou Navigation Satellite System (BDS), Global Positioning System (GPS), and Global Navigation Satellite System (GLONASS) satellites. The three-dimensional accuracies of BDS, GPS, and GLONASS single-point positioning (SPP) were, respectively, improved by 1.07, 0.63 and 0.49 m for the KUN1 site, and by 0.72, 0.79 and 0.73 m for the SHA1 site. Results indicate that the multipath of the original observations was mitigated by using the wave-absorbing shield
    corecore